Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.815
1.
Sci Rep ; 14(1): 10406, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710736

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Anti-Bacterial Agents , Antineoplastic Agents , Nanostructures , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanostructures/chemistry , Escherichia coli/drug effects , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Cell Line, Tumor , Photochemical Processes , Photolysis
2.
Arch Microbiol ; 206(6): 243, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700700

The antibacterial effect of nanoparticles is mainly studied on the ensembles of the bacteria. In contrast, the optical tweezer technique allows the investigation of similar effects on individual bacterium. E. coli is a self-propelled micro-swimmer and ATP-driven active microorganism. In this work, an optical tweezer is employed to examine the mechanical properties of E. coli incubated with ZnO and Ag nanoparticles (NP) in the growth medium. ZnO and Ag NP with a concentration of 10 µg/ml were dispersed in growth medium during active log-growth phase of E. coli. This E. coli-NP incubation is further continued for 12 h. The E. coli after incubation for 2 h, 6 h and 12 h were separately studied by the optical tweezer for their mechanical property. The IR laser (λ = 975 nm; power = 100 mW) was used for trapping the individual cells and estimated trapping force, trapping stiffness and corner frequency. The optical trapping force on E. coli incubated in nanoparticle suspension shows linear decreases with incubation time. This work brings the importance of optical trapping force measurement in probing the antibacterial stress due to nanoparticles on the individual bacterium.


Anti-Bacterial Agents , Escherichia coli , Metal Nanoparticles , Optical Tweezers , Silver , Zinc Oxide , Escherichia coli/drug effects , Escherichia coli/growth & development , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology
3.
Pak J Pharm Sci ; 37(1): 1-8, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741394

The current study was proposed to evaluate the mortal impacts of either alone or mixed treatments of zinc oxide nanoparticles (ZnO NPs) and mureer or Senecio glaucus L. plant (SP) on spleen tissue via immunological and histological studies and to estimate the likely immunomodulatory effect of gallic acid (GA) for 30 days in rats. Rats were classified into eight groups with orally treated: Control, GA (100mg/kg), ZnO NPs (150mg/kg), SP (400mg/kg), GA+ZnO NPs (100,150mg/kg), GA+SP (100,400mg/kg), ZnONPs+SP (150,400mg/kg) and GA+ZnONPs+SP (100,150,400mg/kg). Interleukin-6 (IL-6) level was measured using an enzyme-linked immunoassay (ELISA). Also, the pro-apoptotic protein (caspase-3) expression was estimated using an immunohistochemistry assay. Our data revealed that ZnO NPs and SP triggered a significant increase in the levels of IL-6 and total lipids (TL) and the activity of lactate dehydrogenase (LDH), (p<0.001). Furthermore, they overexpressed caspase-3 and caused lymphoid depletion. They revealed that the immunotoxic outcome of mixed treatment was more than the outcome of the alone treatment. However, GA restored the spleen damage from these adverse results. Finally, this study indicated that ZnO NPs and SP might be immunotoxic and splenotoxic agents; however, GA may be displayed as an anti-inflammatory and splenic-protective agent.


Anti-Inflammatory Agents , Caspase 3 , Gallic Acid , Interleukin-6 , Spleen , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Zinc Oxide/toxicity , Gallic Acid/pharmacology , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , Anti-Inflammatory Agents/pharmacology , Interleukin-6/metabolism , Rats , Caspase 3/metabolism , Male , Nanoparticles , Metal Nanoparticles , Rats, Wistar , Plant Extracts/pharmacology , Immunohistochemistry
4.
ACS Biomater Sci Eng ; 10(5): 2967-2982, 2024 May 13.
Article En | MEDLINE | ID: mdl-38632925

In recent years, nanomaterials have gained widespread use in the biomedical field, with ZIF-8 and ZnO emerging as promising candidates due to their remarkable performance in osteogenesis, angiogenesis, and antimicrobial therapy. However, before advancing these nanomaterials for clinical applications, it is imperative to evaluate their biocompatibility. In particular, comparing nanomaterials with similar biomedical functions is crucial for identifying the most suitable nanomaterials for further development and market entry. Our study aimed to compare the biocompatibility of nano-ZIF-8 and nano-ZnO under the same conditions. We found that nano-ZIF-8 exhibited lower toxicity both in vitro and in vivo compared to nano-ZnO. To gain insights into the underlying mechanisms responsible for this difference, we conducted further experiments to investigate lysosome damage, mitochondrial change, and the occurrence of ferroptosis. Additionally, we performed transcriptome sequencing to analyze the expression of relevant genes, thereby providing robust validation for our findings. In summary, our study highlighted the importance of evaluating nanomaterials with similar biomedical effects. Through this comparative study, we have not only shed light on the superior biocompatibility of nano-ZIF-8 over nano-ZnO, but also contributed valuable insights and methodological references for future material screening endeavors. Ultimately, our study served as a stepping stone toward the development of safer and more effective nanomaterials for various biomedical applications.


Biocompatible Materials , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Mice , Humans , Zinc/chemistry , Zinc/pharmacology , Ferroptosis/drug effects , Materials Testing , Nanostructures/chemistry , Nanostructures/toxicity , Cell Survival/drug effects , Zeolites/chemistry , Zeolites/pharmacology
5.
Nanotechnology ; 35(30)2024 May 07.
Article En | MEDLINE | ID: mdl-38631326

In the current investigation, zinc oxide (ZnO) nanoparticles and Fe-doped ZnO nanoparticles were sustainably synthesized utilizing an extract derived from theRumex dentatusplant through a green synthesis approach. The Scanning electron microscope (SEM), X-ray diffraction (XRD), Energy-dispersive x-ray spectroscopy (EDX), Ultra-violet visible spectroscopy (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) techniques were used to examine the compositional, morphological, optical, and thermal properties of both samples. The doping of iron into ZnO NPs has significantly influenced their properties. The analysis firmly established that both ZnO NPs and Fe-doped ZnO NPs have hexagonal wurtzite structures and spherical shapes by XRD and SEM. The EDX analysis suggests that iron atoms have been successfully integrated into the ZnO lattice. The change in color observed during the reaction indicated the formation of nanoparticles. The UV-vis peaks at 364 nm and 314 nm confirmed the presence of ZnO NPs and Fe-doped ZnO NPs, respectively. The band gap of ZnO NPs by Fe dopant displayed a narrowing effect. This indicates that adding iron ions to ZnO NPs offers a control band gap. The thermal study TGA revealed that Fe-doped ZnO NPs remain stable when heated up to 600 °C. The antibacterial efficacy of ZnO NPs and Fe-doped ZnO NPs was evaluated against several bacterial strains. The evaluation is based on the zone of inhibition (ZOI). Both samples exhibited excellent antibacterial properties as compared to conventional pharmaceutical agents. These results suggest that synthesizing nanoparticles through plant-based methods is a promising approach to creating versatile and environmentally friendly biomedical products.


Anti-Bacterial Agents , Iron , Metal Nanoparticles , Plant Extracts , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Iron/chemistry , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , X-Ray Diffraction , Staphylococcus aureus/drug effects , Spectroscopy, Fourier Transform Infrared
6.
Nanotheranostics ; 8(3): 312-329, 2024.
Article En | MEDLINE | ID: mdl-38577319

Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682µg/ml and 36.675 ± 0.916µg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.


Colorectal Neoplasms , Nanoparticles , Tinospora , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Reactive Oxygen Species/metabolism , Tinospora/metabolism , Caco-2 Cells , Methanol/pharmacology , Apoptosis , Oxidative Stress , Colorectal Neoplasms/drug therapy
7.
Molecules ; 29(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38611744

The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plants has grown in significance in recent years. ZnO NPs were synthesized in this work via a chemical precipitation method with Jasminum sambac (JS) leaf extract serving as a capping agent. These NPs were characterized using UV-vis spectroscopy, FT-IR, XRD, SEM, TEM, TGA, and DTA. The results from UV-vis and FT-IR confirmed the band gap energies (3.37 eV and 3.50 eV) and the presence of the following functional groups: CN, OH, C=O, and NH. A spherical structure and an average grain size of 26 nm were confirmed via XRD. The size and surface morphology of the ZnO NPs were confirmed through the use of SEM analysis. According to the TEM images, the ZnO NPs had an average mean size of 26 nm and were spherical in shape. The TGA curve indicated that the weight loss starts at 100 °C, rising to 900 °C, as a result of the evaporation of water molecules. An exothermic peak was seen during the DTA analysis at 480 °C. Effective antibacterial activity was found at 7.32 ± 0.44 mm in Gram-positive bacteria (S. aureus) and at 15.54 ± 0.031 mm in Gram-negative (E. coli) bacteria against the ZnO NPs. Antispasmodic activity: the 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by (78.19%), acetylcholine (at a concentration of 1 µM) by (67.57%), and nicotine (at a concentration of 2 µg/mL) by (84.35%). The antipyretic activity was identified using the specific Shodhan vidhi method, and their anti-inflammatory properties were effectively evaluated with a denaturation test. A 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by 78.19%, acetylcholine (at a concentration of 1 µM) by 67.57%, and nicotine (at a concentration of 2 µg/mL) by 84.35%. These results underscore the sample solution's potential as an effective therapeutic agent, showcasing its notable antispasmodic activity. Among the administered doses, the 150 mg/kg sample dose exhibited the most potent antipyretic effects. The anti-inflammatory activity of the synthesized NPs showed a remarkable inhibition percentage of (97.14 ± 0.005) at higher concentrations (250 µg/mL). Furthermore, a cytotoxic effect was noted when the biologically synthesized ZnO NPs were introduced to treated cells.


Antipyretics , Jasminum , Nanoparticles , Zinc Oxide , Zinc Oxide/pharmacology , Parasympatholytics , Acetylcholine , Escherichia coli , Histamine , Nicotine , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology
8.
Sci Rep ; 14(1): 9348, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654048

This study investigates the creation and analysis of chitosan-zinc oxide (CS-ZnO) nanocomposites, exploring their effectiveness in inhibiting bacteria. Two synthesis approaches, physical and chemical, were utilized. The CS-ZnO nanocomposites demonstrated strong antibacterial properties, especially against Staphylococcus aureus, a Gram-positive bacterium. Chemically synthesized nanocomposites (CZ10 and CZ100) exhibited larger inhibition zones (16.4 mm and 18.7 mm) compared to physically prepared CS-Z5 and CS-Z20 (12.2 mm and 13.8 mm) against Staphylococcus aureus. Moreover, CZ nanocomposites displayed enhanced thermal stability, with decomposition temperatures of 281°C and 290°C, surpassing CS-Z5 and CS-Z20 (260°C and 258°C). The residual mass percentages at 800°C were significantly higher for CZ10 and CZ100 (58% and 61%) than for CS-Z5 and CS-Z20 (36% and 34%). UV-Visible spectroscopy revealed reduced band gaps in the CS-ZnO nanocomposites, indicating improved light absorption. Transmission electron microscopy (TEM) confirmed uniform dispersion of ZnO nanoparticles within the chitosan matrix. In conclusion, this research underscores the impressive antimicrobial potential of CS-ZnO nanocomposites, especially against Gram-positive bacteria, and highlights their enhanced thermal stability. These findings hold promise for diverse applications in industries such as medicine, pharmaceuticals, and materials science, contributing to the development of sustainable materials with robust antimicrobial properties.


Anti-Bacterial Agents , Chitosan , Microwaves , Nanocomposites , Staphylococcus aureus , Zinc Oxide , Chitosan/chemistry , Chitosan/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanocomposites/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests
9.
Sci Rep ; 14(1): 9027, 2024 04 19.
Article En | MEDLINE | ID: mdl-38641640

Copper-doped ZnO nanoparticles with the formula Zn1-x(Cu)O, where x = 0.0, 0.03, 0.05, and 0.07 were produced using the co-precipitation process. Physical, chemical, and structural properties were properly examined. Powdered X-ray diffraction (P-XRD) patterns revealed the formation of hexagonal wurtzite crystal structure in all samples, through atomic substitutional incorporation in the Cu-doped ZnO lattice. The presence of Cu ions and their dissolution in the host ZnO crystal structure was supported by FT-IR spectra. HR-TEM images were used to assess the average size, morphology, and shape regularity of the synthesized samples. The form and homogeneity of the ZnO changed when Cu ions were substituted, as evidenced by FE-SEM/EDX analysis. The presence of copper signals in the Cu-doped samples indicates that the doping was successful. The decrease in zeta potential with an increased copper doping percentage designates that the nanoparticles (NPs) are more stable, which could be attributed to an increase in the ionic strength of the aqueous solution. The synthesized NPs were evaluated for their substantial in vitro antioxidant properties. In addition, the antimicrobial efficacy of the materials was tested against pathogenic microorganisms. Regarding the anti-diabetic activity, the 7Cu ZnO sample showed the highest inhibitory effect on the α-amylase enzyme. No variations were observed in the activities of the acetylcholinesterase enzyme (AChE) and proteinase enzymes with ZnO and samples doped with different concentrations of Cu. Therefore, further studies are recommended to reveal the in-vitro anti-diabetic activity of the studied doped samples. Finally, molecular docking provided valuable insights into the potential binding interactions of Cu-doped ZnO with α-amylase, FabH of E. coli, and Penicillin-binding proteins of S. aureus. These outcomes suggest that the prepared materials may have an inhibitory effect on enzymes and hold promise in the battle against microbial infections and diabetes.


Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Copper/chemistry , Escherichia coli , Staphylococcus aureus , Acetylcholinesterase , Ions/pharmacology , alpha-Amylases
10.
Sci Rep ; 14(1): 9159, 2024 04 22.
Article En | MEDLINE | ID: mdl-38644372

Different strains of Escherichia coli that exhibit genetic characteristics linked to diarrhea pose a major threat to both human and animal health. The purpose of this study was to determine the prevalence of pathogenic Escherichia coli (E. coli), the genetic linkages and routes of transmission between E. coli isolates from different animal species. The efficiency of disinfectants such as hydrogen peroxide (H2O2), Virkon®S, TH4+, nano zinc oxide (ZnO NPs), and H2O2-based zinc oxide nanoparticles (H2O2/ZnO NPs) against isolated strains of E. coli was evaluated. Using 100 fecal samples from different diarrheal species (cow n = 30, sheep n = 40, and broiler chicken n = 30) for E. coli isolation and identification using the entero-bacterial repetitive intergenic consensus (ERIC-PCR) fingerprinting technique. The E. coli properties isolated from several diarrheal species were examined for their pathogenicity in vitro. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared spectrum (FT-IR), X-ray diffraction (XRD), zeta potential, and particle size distribution were used for the synthesis and characterization of ZnO NPs and H2O2/ZnO NPs. The broth macro-dilution method was used to assess the effectiveness of disinfectants and disinfectant-based nanoparticles against E. coli strains. Regarding the results, the hemolytic activity and Congo red binding assays of pathogenic E. coli isolates were 55.3 and 44.7%, respectively. Eleven virulent E. coli isolates were typed into five ERIC-types (A1, A2, B1, B2, and B3) using the ERIC-PCR method. These types clustered into two main clusters (A and B) with 75% similarity. In conclusion, there was 90% similarity between the sheep samples' ERIC types A1 and A2. On the other hand, 89% of the ERIC types B1, B2, and B3 of cows and poultry samples were comparable. The H2O2/ZnO NPs composite exhibits potential antibacterial action against E. coli isolates at 0.04 mg/ml after 120 min of exposure.


Chickens , Diarrhea , Disinfectants , Escherichia coli Infections , Escherichia coli , Hydrogen Peroxide , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Hydrogen Peroxide/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Diarrhea/microbiology , Diarrhea/veterinary , Chickens/microbiology , Disinfectants/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Sheep , Cattle , Nanoparticles/chemistry , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Feces/microbiology , Metal Nanoparticles/chemistry
11.
Plant Cell Rep ; 43(4): 110, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564104

KEY MESSAGE: Nanoparticle pretreatment improved the health of aged Cajanus cajan seeds viz., regulation of redox status, gene expression, and restoration of hormonal homeostasis. Ageing deteriorates the quality of seeds by lowering their vigor and viability, and terminating with loss of germination. These days, nanotechnology has been seen to revolutionize the agricultural sectors, and particularly nano zinc oxide (nZnO) has gained considerable interests due to its distinctive properties. The aim of the present work was to decipher the possibilities of using nZnO to rejuvenate accelerated aged (AA) seeds of Cajanus cajan. Both chemically (CnZnO) and green (GnZnO; synthesized using Moringa oleifera) fabricated nZnOs were characterized via standard techniques to interpret their purity, size, and shape. Experimental results revealed erratic germination with a decline in viability and membrane stability as outcomes of reactive oxygen intermediate (ROI) buildup in AA seeds. Application of nZnO substantially rebated the accrual of ROI, along with enhanced production of antioxidants, α-amylase activity, total sugar, protein and DNA content. Higher level of zinc was assessed qualitatively/ histologically and quantitatively in nZnO pulsed AA seeds, supporting germination without inducing toxicity. Meantime, augmentation in the gibberellic acid with a simultaneous reduction in the abscisic acid level were noted in nZnO invigorated seeds than that determined in the AA seeds, suggesting possible involvement of ROI in hormonal signalling. Furthermore, nZnO-subjected AA seeds unveiled differential expression of aquaporins and cell cycle regulatory genes. Summarizing, among CnZnO and GnZnO, later one holds better potential for a revival of AA seeds of Cajanus cajan by providing considerable tolerance against ageing-associated deterioration via recouping the cellular redox homeostasis, hormonal signaling, and alteration in expression patterns of aquaporin and cell cycle regulatory genes.


Aquaporins , Cajanus , Zinc Oxide , Zinc Oxide/pharmacology , Genes, Regulator , Cell Cycle
12.
Cryo Letters ; 45(2): 100-105, 2024.
Article En | MEDLINE | ID: mdl-38557988

BACKGROUND: Nanotechnology can benefit livestock industries, especially through postharvest semen manipulation. Zinc oxide nanoparticles (Np-ZnO) are potentially an example. OBJECTIVE: To investigate how the addition of zinc oxide nanoparticles (Np-ZnO) affected the characteristics of post-thawed goat semen. MATERIALS AND METHODS: Seminal pools from four Saanen bucks were used. Semen was diluted in Tris-egg yolk extender, supplemented with Np-ZnO (0, 50, 100 or 200 ug/mL), frozen and stored in liquid nitrogen (-196 degree C), and thawed in a water bath (37 degree C / 30 s). Semen samples were evaluated for sperm kinetics by computer-assisted sperm analysis (CASA), and assessed for other functional properties by epifluorescence microscopy, such as plasma membrane integrity (PMi), acrosomal membrane integrity (ACi) and mitochondrial membrane potential (MMP). RESULTS: For total motility (TM), the group treated with 200 ug/mL Np-ZnO was superior to the control. In straight-line velocity (VSL), the control was better than the group containing 200 ug/mL of Np-ZnO. For average path velocity (VAP), the control was higher than with 100 ug/mL Np-ZnO. For linearity (LIN), the control was higher than with 200 µg/mL Np-ZnO. In straightness (STR), the control and 100 µg/mL Np-ZnO were higher than with 200 ug/mL Np-ZnO. In wobble (WOB), the control was better than the 50 µg/mL Np-ZnO treatment. In PMi, ACi and MMP no significant differences were found. CONCLUSION: The addition of Np-ZnO (200 ug/mL) to the goat semen freezing extender improved the total motility of cells, whilst negatively affecting sperm kinetics. https://doi.org/10.54680/fr24210110512.


Semen Preservation , Zinc Oxide , Animals , Male , Freezing , Semen , Zinc Oxide/pharmacology , Goats , Cryoprotective Agents/pharmacology , Cryopreservation/veterinary , Sperm Motility , Semen Preservation/veterinary , Spermatozoa
13.
Int J Nanomedicine ; 19: 2995-3007, 2024.
Article En | MEDLINE | ID: mdl-38559446

Background: In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods: ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results: ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 µg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 µg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion: ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.


Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Otitis Media , Staphylococcal Infections , Zinc Oxide , Humans , Staphylococcus aureus , Hydroxyl Radical , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Otitis Media/drug therapy , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry
14.
World J Microbiol Biotechnol ; 40(6): 184, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683406

The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.


Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Quorum Sensing , Rutin , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Rutin/pharmacology , Rutin/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quorum Sensing/drug effects , Nanoparticles/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metal Nanoparticles/chemistry , Hemolysis/drug effects , Virulence/drug effects , Particle Size , Pyocyanine/metabolism
15.
Reprod Domest Anim ; 59(4): e14568, 2024 Apr.
Article En | MEDLINE | ID: mdl-38646997

Sperm cryopreservation is one of the main methods for preserving rooster sperm for artificial insemination (AI) in commercial flocks. Yet, rooster sperm is extremely susceptible to reactive oxygen species (ROS) produced during the freezing process. Oxidative stress could be prevented by using nanoparticles containing antioxidants. The present study was conducted to investigate the effect of zinc oxide nanoparticles (ZnONP) in rooster semen freezing extender on quality parameters and fertility potential. For this aim, semen samples were collected and diluted in Lake extenders as follows: control: Lake without ZnONP, ZnO100: Lake with 100-µg zinc oxide (ZnO), ZnONP50: Lake with 50-µg ZnONP, ZnONP100: Lake with 100-µg ZnONP and ZnONP200: Lake with 200-µg ZnONP. After freezing and thawing, sperm motility, viability, membrane integrity, morphology, mitochondrial activity, acrosome integrity, DNA fragmentation, lipid peroxidation and ROS, as well as fertility and hatchability were assessed. According to the current results, higher rates of motility, membrane integrity, mitochondrial activity, acrosome integrity and live cells were detected in the ZnO100, ZnONP50 and ZnONP100 groups compared to other groups (p ≤ .05). Yet, the percentage of dead cells, DNA fragmentation, lipid peroxidation and ROS levels were lower in the mentioned groups (p ≤ .05). Furthermore, a higher percentage of fertility was observed in the ZnO100 and ZnONP100 groups than in the control group (p ≤ .05). In conclusion, the use of 100-µg ZnO and 50- to 100-µg ZnONP represents a valuable and safe additive material that could be used to improve the quality and fertility potential of rooster sperm under cryopreservation conditions.


Chickens , Cryopreservation , Fertility , Reactive Oxygen Species , Semen Preservation , Sperm Motility , Spermatozoa , Zinc Oxide , Male , Animals , Zinc Oxide/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Spermatozoa/drug effects , Spermatozoa/physiology , Reactive Oxygen Species/metabolism , Semen Preservation/veterinary , Semen Preservation/methods , Fertility/drug effects , Sperm Motility/drug effects , DNA Fragmentation/drug effects , Lipid Peroxidation/drug effects , Nanoparticles , Cryoprotective Agents/pharmacology , Semen Analysis/veterinary , Female
16.
BMC Vet Res ; 20(1): 137, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575964

OBJECTIVES: Fasciolosis is of significant economic and public health importance worldwide. The lack of a successful vaccine and emerging resistance in flukes to the drug of choice, triclabendazole, has initiated the search for alternative approaches. In recent years, metallic nanoparticles have been extensively investigated for their anthelmintic effects. This study investigates the in vitro anthelmintic activity of copper oxide and zinc oxide nanoparticles against Fasciola hepatica. METHODS: The in vitro study was based on egg hatchability test (EHA), adult motility inhibition tests, DNA damage, ROS levels, as well as several biomarkers of oxidative stress, including glutathione peroxidase (GSH) and glutathione S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). For this purpose, different concentrations of copper oxide nanoparticles (CuO-NPs) and Zinc oxide nanoparticles (ZnO-NPs) (1, 4, 8, 12, and 16 ppm) were used to evaluate the anthelmintic effect on different life stages, including egg and adults of Fasciola hepatica, over 24 h. RESULTS: In vitro treatment of F. hepatica worms with both CuO-NPs and ZnO-NPs could significantly increase ROS production and oxidative stress induction (decreased SOD, GST and GSH and increased MDA) compared to control group. CONCLUSIONS: Based on the results, it seems that CuO-NPs and ZnO-NPs may be effective in the control and treatment of F. hepatica infection. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.


Anthelmintics , Fasciola hepatica , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Copper/pharmacology , Reactive Oxygen Species , Oxidative Stress , Anthelmintics/pharmacology , DNA Damage , Superoxide Dismutase/metabolism , Biomarkers
17.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Article En | MEDLINE | ID: mdl-38636254

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Antioxidants , Chromium , Klebsiella , Mustard Plant , Zinc Oxide , Mustard Plant/drug effects , Mustard Plant/microbiology , Mustard Plant/metabolism , Chromium/toxicity , Chromium/metabolism , Antioxidants/metabolism , Klebsiella/metabolism , Klebsiella/drug effects , Zinc Oxide/pharmacology , Adsorption , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Soil Pollutants/toxicity
18.
Life Sci ; 347: 122667, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38670449

BACKGROUND: Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and ß-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function. AIM: This study evaluated the effect of ZON on renal function, leading to the alleviation of DN in streptozotocin (STZ)-induced type 1 diabetic Wistar rats and proposed a probable mechanism for its activity. METHODS: Wistar rats (n = 6/group) were used as healthy controls, diabetic controls, diabetic rats treated with ZON (1, 3, and 10 mg/kg), and insulin controls. Urine and serum biochemical parameters, glomerular filtration rate (GFR), and renal histology were also evaluated. Cultured E11 podocytes were evaluated in vitro for markers of oxidative stress, proteins associated with the loss of renal function, and genes associated with renal damage. KEY FINDINGS: STZ-treated rats receiving oral doses of ZON showed enhanced renal function, with no histological alterations in the kidney tissue. ZON inhibited the TGF-ß/Samd3 pathway in renal fibrosis; blocked Ripk1/Ripk3/Mlkl mediated necroptosis and protected against hyperglycemia-induced pyroptosis. In E11 podocytes, ZON reduced oxidative stress under high glucose conditions and retained podocyte-specific proteins. SIGNIFICANCE: A probable mechanism by which ZON prevents DN has been proposed, suggesting its use as a complementary therapeutic agent for the treatment of diabetic complications. To the best of our knowledge, this is the first study to demonstrate the in vitro effects of ZON in cultured podocytes.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Oxidative Stress , Rats, Wistar , Zinc Oxide , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/pathology , Oxidative Stress/drug effects , Rats , Male , Zinc Oxide/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Nanoparticles , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Fibrosis , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Streptozocin , Signal Transduction/drug effects
19.
Nanotechnology ; 35(30)2024 May 07.
Article En | MEDLINE | ID: mdl-38640906

Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2%) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-vis) revealed that optical band gap energy of ZnO nanoparticles (∼3.2 eV) GO-ZnO nanosheets (∼2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth ofE. colibiofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.


Anti-Bacterial Agents , Escherichia coli , Graphite , Hydrogels , Polyesters , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Graphite/chemistry , Graphite/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Polyesters/chemistry , Polyesters/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Microbial Sensitivity Tests , Nanocomposites/chemistry , Ultrasonic Waves
20.
Environ Pollut ; 349: 123987, 2024 May 15.
Article En | MEDLINE | ID: mdl-38621453

Algae-driven photosynthetic CO2 fixation is a promising strategy to mitigate global climate changes and energy crises. Yet, the presence of metal nanoparticles (NPs), particularly dissolvable NPs, in aquatic ecosystems introduces new complexities due to their tendency to release metal ions that may perturb metabolic processes related to algal CO2 fixation. This study selected six representative metal NPs (Fe3O4, ZnO, CuO, NiO, MgO, and Ag) to investigate their impacts on CO2 fixation by algae (Chlorella vulgaris). We discovered an intriguing phenomenon that bivalent metal ions released from the metal NPs, especially from ZnO NPs, substituted Mg2+ within the porphyrin ring. This interaction led to 81.8% and 76.1% increases in Zinc-chlorophyll and Magnesium-chlorophyll contents within algal cells at 0.01 mM ZnO NPs, respectively. Integrating metabolomics and transcriptomics analyses revealed that ZnO NPs mainly promoted the photosynthesis-antenna protein pathway, porphyrin and chlorophyll metabolism, and carbon fixation pathway, thereby mitigating the adverse effects of Zn2+ substitution in light harvesting and energy transfer for CO2 fixation. Ultimately, the genes encoding Rubisco large subunit (rbcL) responsible for CO2 fixation were upregulated to 2.60-fold, resulting in a 76.3% increase in carbon fixation capacity. Similar upregulations of rbcL expression (1.13-fold) and carbon fixation capacity (76.1%) were observed in algal cells even at 0.001 mM ZnO NPs, accompanied by valuable lipid accumulation. This study offers novel insights into the molecular mechanism underlying NPs on CO2 fixation by algae and potentially introduces strategies for global carbon sequestration.


Carbon Cycle , Carbon Dioxide , Chlorophyll , Metal Nanoparticles , Photosynthesis , Metal Nanoparticles/chemistry , Carbon Dioxide/metabolism , Photosynthesis/drug effects , Chlorophyll/metabolism , Chlorella vulgaris/metabolism , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
...